
ITRI Industrial Technology Research Institute

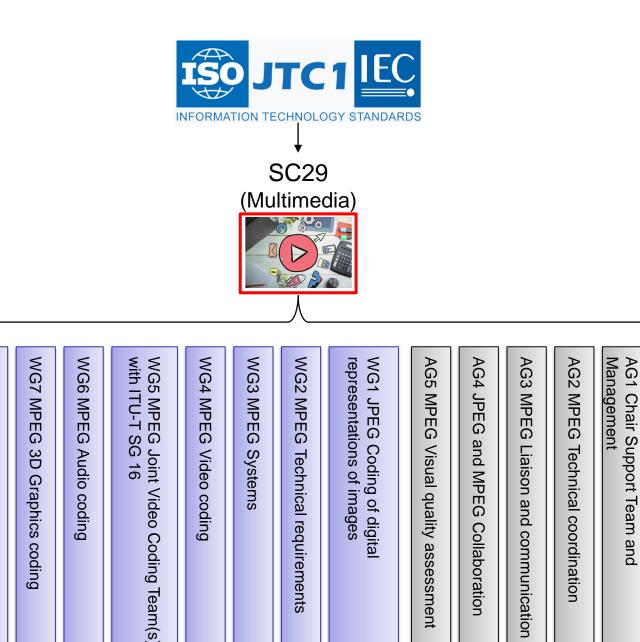
MPEG標準會議分享

29th October 2021

Outline

- Introduction of MPEG
- 3D Graphics Coding (3DG)
- MPEG Video Coding
- Video Coding for Machine (VCM)

MPEG標準組織架構

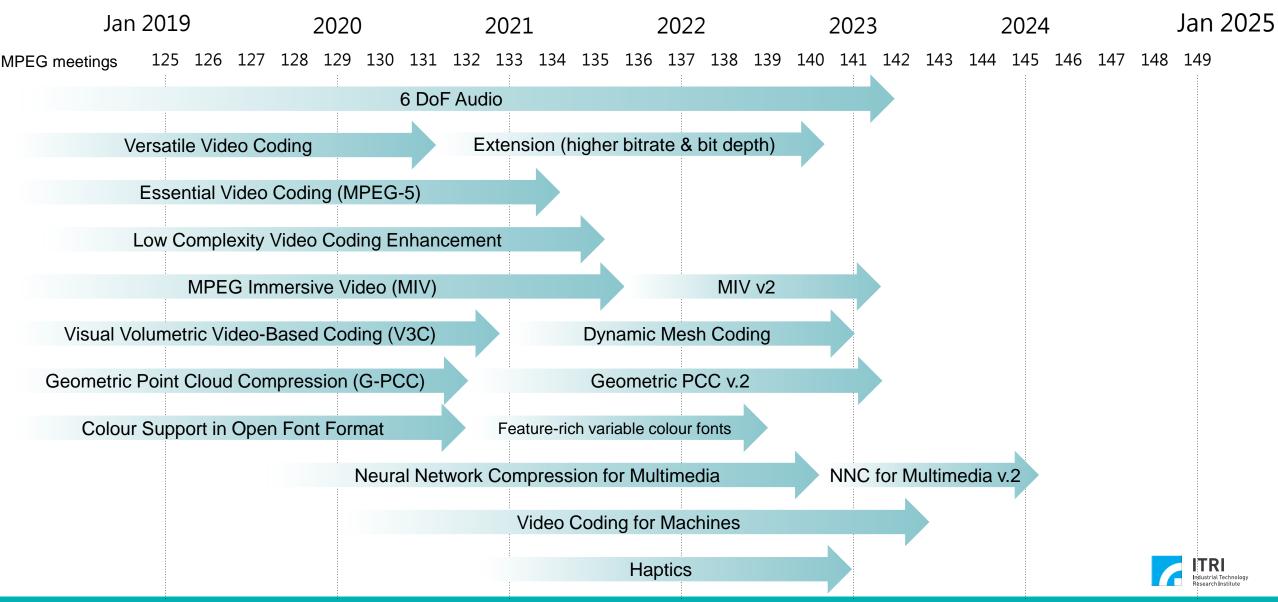

- MPEG(Moving Picture Experts Group)
 - ISO/IEC Joint Technical Committee 1, Subcommittee 29
 - 5個Advisory group與8個working group
 - Working group 針對特定主題進行技 術討論與標準制定工作

WG8 MP

ĔG

Genomic coding

- Advisory group 負責組織管理、聯繫 ٠ 與共通性議題的處理
- 每年開會四次,最近七次會議皆採遠 端會議形式
- 預計2022/04開始採用遠端/實體複合 式會議的形式舉辦

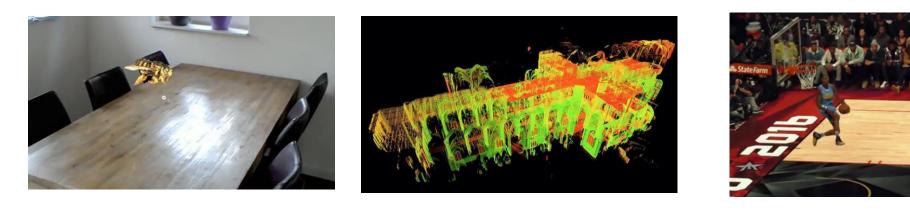


Copyright ITRI

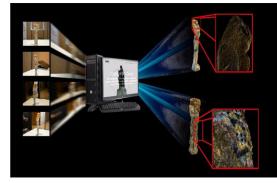
and

Industrial Technolog

MPEG Roadmap

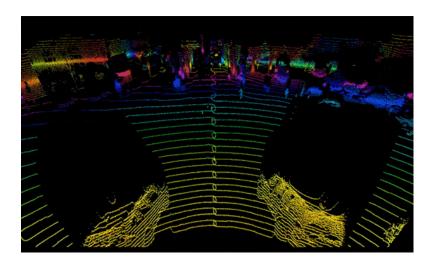


3D GRAPHICS CODING (3DG)



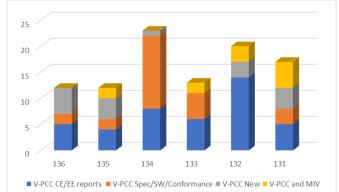
Applications and use cases

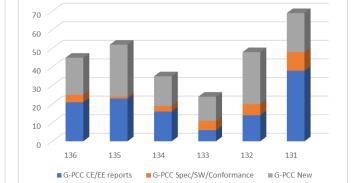
• Real-time telepresence, VR, Sport Broadcasting, Cultural heritage, Geographic Information, Autonomous Navigation

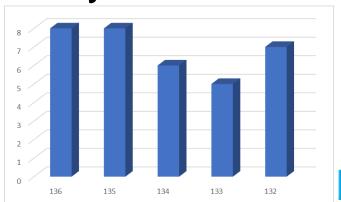


MPEG 3DG Report

Graphics Compression


V-PCC




Dynamic Mesh

ITRI

ndustrial Technolog

V-PCC activities

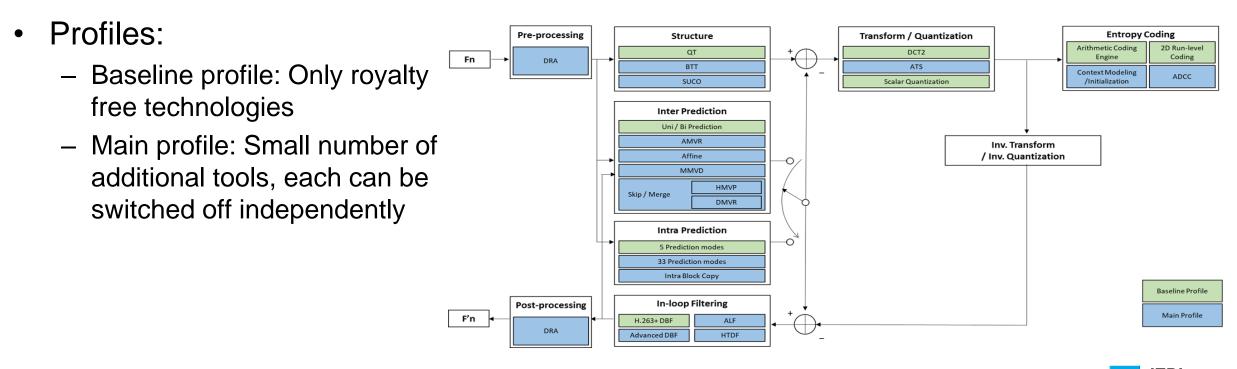
- V-PCC related activities
 - RDO model, parallel processing
 - Spatially Scalable Video-Based Point Cloud Compression
 - Evaluation of VVC coding tools for V-PCC software
 - Conformance and Ref. S/W on track (promoted DIS)
 - V-PCC Verification Tests

Dynamic Mesh Coding

- Previous mesh standards did not take into account time varying attribute maps and connectivity information
- It could reuse the very promising framework set up by V-PCC that is heavily relying on video-compression
- Video-based mesh (V-mesh) → Dynamic Mesh Coding CfP
- CfP issued at October 2021!
- Plan to review responses at April 2022 and finalize standardization in 2024

G-PCC main topics

- Activities in G-PCC
 - Revision of the FDIS Editors comments
 - Conformance for G-PCC
- Technical topics
 - Inter-frame coding
 - Point cloud coding with very low complexity and latency
 - AI technologies for point cloud coding

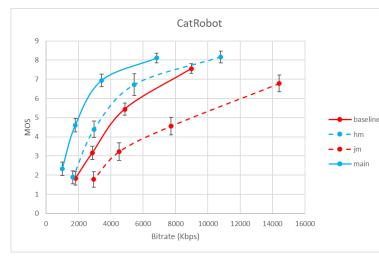


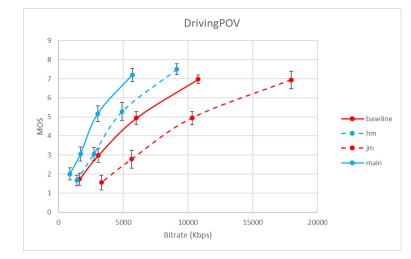
MPEG Video Coding

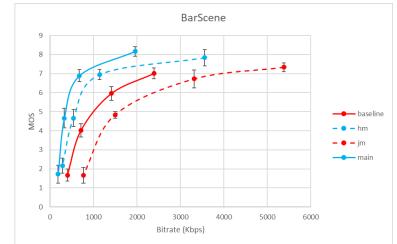
Essential Video Coding

- Goal:
 - Encourage timely publication of licensing terms to allow reliable business plans to be created
 - Coding efficiency at least as good as HEVC
 - Complexity suitable for practical real time encoding

Essential Video Coding

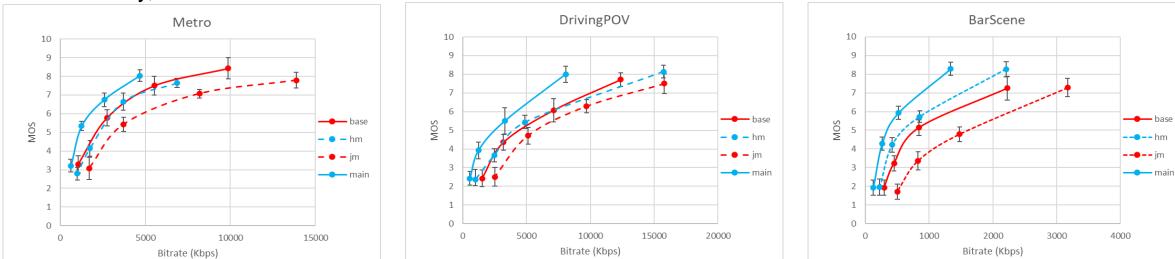

- FDIS on conformance and reference SW
 - ETM 7.3 as reference SW
 - Public available of reference SW and conformance bitstreams
- Implementation & market support
 - Real-time Mobile Video Player based on ETM 6.1 and optimized for ARM (by Solveig Multimedia & Huawei)
 - Tested on Huawei P40 Pro
 - 30+ FPS on 1080p
 - Zond 265 video bitstream analyzer include EVC





Summary of EVC Verification Test Results

Random Access, UHD



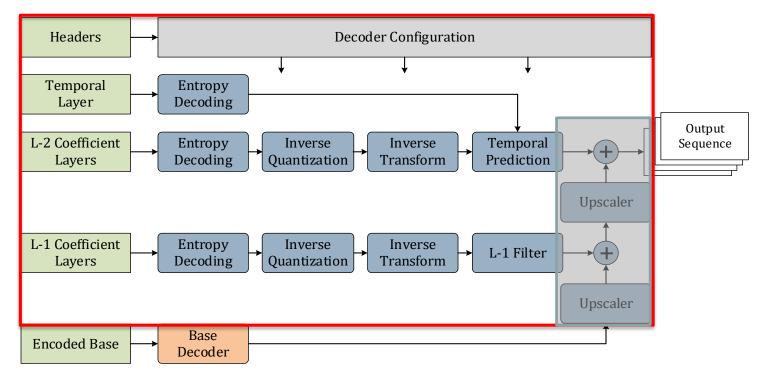
:hnology

Low delay, HD

Copyright ITRI

Source: w20000 Report on Essential Video Coding compression performance verification testing for SDR content, ISO/IEC SC29 WG4 Online January 2021

Summary of EVC Verification Test Results


- EVC Main profile vs. HEVC Main10 profile:
 - SDR-RA (UHD): 39% gain
 - SDR-LD (HD): 41% gain
- EVC Baseline profile vs. AVC High10 profile
 - SDR-RA (UHD): 39% gain
 - SDR-LD (HD): 34% gain

PS: All in MOS BD-rate

Low Complexity Enhancement Video Coding

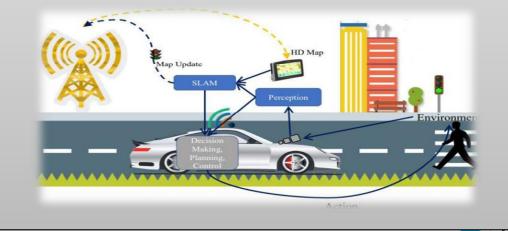
- 23094-2 LCEVC
 - FDIS approved
- 23094-3 Conformance and Reference Software
 - DIS ballot on going

Summary of LCEVC Verification Test Results

- Anchor: AVC, HEVC, VVC and EVC with full and half resolutions.
- Test: LTM5.1

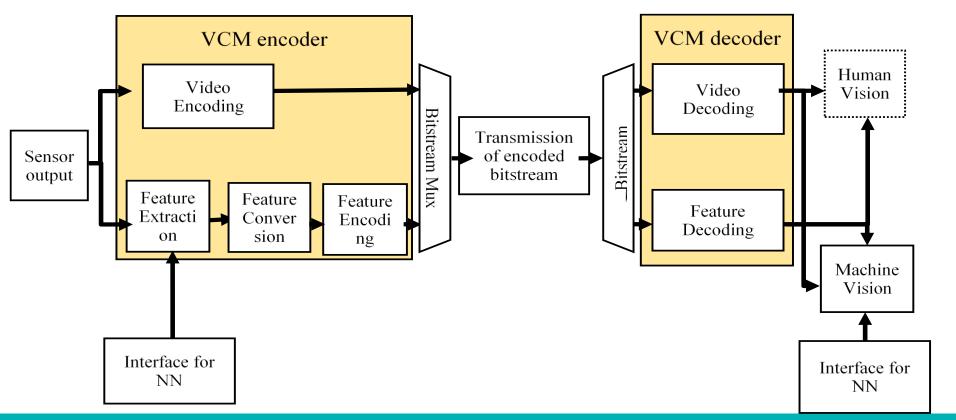
				CatRobot	
Anchor	Condition	Full Resolution Avg. BD-rate	Half Resolution Avg. BD-rate		
AVC / H.264	SDR_UHD	-45.90%	-27.52%	S S S S S S S S S S S S S S S S S S S	SQ 5 4 3
	SDR HD	-28.47%	-27.04%		
HEVC / H.265	SDR_UHD	-30.87%	-33.65%	0 5000 10000 15000 20000 Bitrate (Kbps)	0 2000
	SDR HD	-24.14%	-25.80%		10
VVC / H.266	SDR_UHD	-15.66%	-33.36%	8 7	8
	SDR HD	-14.14%	-20.53%		6 SOM 5 4
EVC	SDR_UHD	-17.77%	-37.86%		3 2 1
	SDR HD	-8.55%	-21.09%	0 2000 4000 6000 8000 10000 Bitrate (Kbps)	0

Video Coding for Machine(VCM)



Video Coding for Machine

 Traditional coding methods aim for the best video under certain bit-rate constraint for <u>human</u> <u>consumption</u>.


- Machines will communicate amongst themselves to perform tasks without a human.
- Transmission and archive systems require a more compact data representation and low latency solution for machine vision.

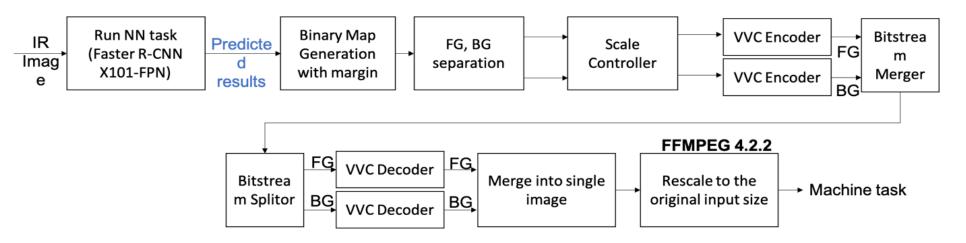
Potential VCM architecture

- The VCM codec could be video codec, feature codec, or both.
- Machine vision tasks could be split into two stages and being implemented in the encoder side and decoder side respectively.

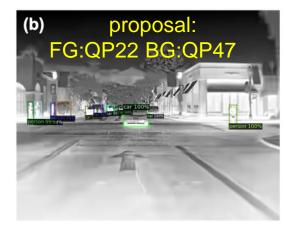
ITRI

Status and progress

- Main topics in VCM
 - Feature compression
 - End-to-end image/video compression for machine
 - Hybrid machine / human compression
- Dedicated to improve anchor and define evaluation framework
- First call for evidence was issued in January 2021 and completed in April 2021
 - Received 5 responses, 2 are accepted as evidences
 - Both accepted responses are regarding object detection task
- Based on the result of CfE, the AhG starts to discuss EE establishment and prepare draft CfP

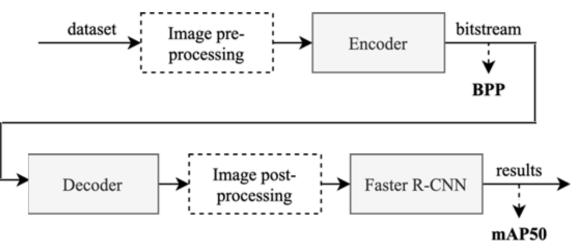


Responses to Call for Evidence


Company	Title	Description	Conclusion
ZJU	[VCM] ZJU response to cfe: deep learning-based compression for machine vision	End-to-end codec for object detection	Accepted
Konkuk Univ. / ETRI	[VCM] Response to CfE: Object detection results with the FLIR dataset	Separate image into FG and BG and compress them with different resolution/QP.	Accepted
Tencent	[VCM] Response to CfE: Investigation of VVC Codec for Video Coding for Machine	Investigate performance of VVC tools in terms of machine vision.	Not recognized as evidence
USTC	[VCM] Evidence of VCM: Object Detection Evaluation on Semantically Structured Image Compression (SSIC)	learning-based semantically structured image coding framework for high level and low level features	Not recognized as evidence
China Telecom / HQT	[VCM] Response to Call for Evidence of Video Coding for Machine: K-means and BAC based feature compression	Use K-means algorithm to analyze feature data for adaptive quantization.	Insufficient results

Response to CfE (ETRI, Konkuk Univ.)

- Creates the binary maps from the predicted results by adding margin pixels and separate the original image into FG and BG.
- Selectively down-scale FG and BG and encoded with different QPs and merged to a single bitstream
- About 18.89% BD-rate saving



	BD-rate (%)					
	100%	-18.89				
mAP	75%	-36.04				
	Average	-27.45				
Pare	to mAP	-30.76				

Response to CfE (ZJU)

- End-to-end deep learning-based image coding networks (Cheng2020's networks) optimized for machine vision tasks.
- The re-trained model (optimized for mAP) can achieve 22.8% BD-rate saving compared to VTM8.2 (optimized for PSNR)

QP	Anchor	(VTM-8.2)	re-trained Cheng2020's networks		
	BPP	mAP	BPP	mAP	
22(1)	0.83601788	0.76517548	0.5556372957	0.76346890	
27(2)	0.496323715	0.76032878	0.4531612348	0.76153704	
32(3)	0.277115735	0.749032079	0.3147077104	0.75533322	
37(4)	0.146083233	0.722172818	0.1958046374	0.74696396	
42(5)	0.073909964	0.672795607	0.1167023101	0.72394438	
47(6)	0.035294544	0.566341802	0.0746458029	0.70362475	
BD-rate		-	-22.80%		

