

LTE-WLAN Radio Level Integration/LAA Status

Wei-Chen Pao 2016/03/29

Copyright 2016 ITRI 工業技術研究院

LTE + Unlicensed Spectrum

- The fast uptake of LTE in different regions of the world shows both that <u>demand for wireless broadband data is increasing</u>, and that LTE is an extremely successful platform to meet that demand.
- At the same time, <u>unlicensed spectrum</u> is more and more considered by cellular operators as a complementary tool to augment their service offering.
 - LTE Related SI/WI
 - Rel-12: LTE/WLAN Radio Interworking
 - Rel-13: LTE-WLAN Radio Level Integration
 - Rel-13: LTE-WLAN Radio Level Integration support Legacy WLAN
 - Rel-13: Licensed-Assisted Access using LTE

Status of LTE-WLAN Radio Level Integration

3GP

A GLOBAL INITIATIVE

Source: QC Copyright 2016 ITRI 工業技術研究院

ITRI Industrial Technology Research Institute Brief history of LTE/Wi-Fi interworking

•	Rel-8 (Dec. '08)	 Mobility with IP address preservation of all traffic from 3GPP access to Wi-Fi access (and policing through ISMP) 	
•	Rel-10 (Jun. '11)	 Mobility with IP address preservation for selected IP flows (IFOM) Simultaneous IP connectivity to 3GPP and Wi-Fi access networks (MAPCON) 	m-level
•	Rel-11 (Jun. '13)	 Improved definition of IP flows for enhanced traffic steering (DIDA) Transparent IP connectivity via trusted Wi-Fi using GPRS Tunneling Protocol (SaMOG) IP connectivity via Broadband Access, such as DSL line 	Syste
•	Rel-12 (Mar. '15)	 Multiple IP connectivity via Trusted WLAN using GTP (eSaMOG) Prioritization of different 3GPP access networks with respect to Wi-Fi (WORM) APN selection based on the type of traffic (IARP) Enhanced Wi Fi network selection policies (integration with HotSpot 2.0) 	16
		 Enhanced WI-FI network selection policies (integration with Hotspot 2.0) Offload based on RAN-level policies and UE measured quality of 3GPP and Wi-Fi 	Radio-leve

台灣資通產業標準協會 High Level Interaction Betweeteret Technology ANDSF & UE ANDS

Operator deployed WLAN networks are often under-utilized

Source: hsc Copyright 2016 ITRI 工業技術研究院

For example,

7

As <u>operator controlled WLAN</u> deployments become more common and WLAN usage increases, <u>RAN le</u> <u>vel enhancements for WLAN interworking</u> which ma y improve user experience, provide more operator c ontrol and better access network utilization and red uced OPEX may be needed.

Started from December, 2012

Rel 12: WLAN/3GPP Radio III Industrial Technology Interworking (IWK)

 3GPP Rel-12 is working on <u>control plane</u> interworking between Wi-Fi and LTE/3G, which will allow more dynamic and reliable control of Wi-Fi offloading.

The study shall apply solely to WLAN APs deployed and controlled by cellular operators and their partners.

Separate # 協會 High Level Overview of the Wester Technology Feature in 3GPP R12

RAN rules and RAN thresholds/parameters

```
if (measured_metricA < threshold1) && (measured_metricB > threshold2) {
    steerTrafficToWLAN();
} else if (measured_metricA > threshold3) || (measured_metricB < threshold4) {
    steerTrafficTo3gpp();
}
</pre>
```


Operators want control!

Source: 3GPP TR 37.834 Copyright 2016 ITRI 工業技術研究院

13

RAN Solution

 LTE/3G small cell and Wi-Fi APs infrastructure will be more <u>tightly</u> integrated in the future.

Evolutionary Map for the second secon

The objectives of this work item are to define <u>LTE-</u><u>WLAN aggregation</u> and <u>interworking enhancement</u> solutions addressing the co-located and non-co-loc ated scenarios where aggregation solution is based on the Release-12 <u>Dual Connectivity</u> solutions 2C a nd 3C and interworking enhancement is based on s olution-3 in the Release-12 SI on <u>3GPP/WLAN Rad</u> io Interworking.

Started from March, 2015

Source: RP-122038 Copyright 2016 ITRI 工業技術研究院

Rel 13: LTE-WLAN Radio Level Integration and Interworking Enhancement

LTE/WLAN aggregation

LTE-WLAN Radio Level Integration supporting Legacy WLAN

LTE/WLAN interworking enhancements

- E-UTRAN supports LTE-WLAN aggregation (LWA) operation whereby a UE in <u>RRC_CONNECTED</u> is configured by the eNB to utilize radio resources of LTE and WLAN.
- Two bearer types exist for LWA: <u>split LWA bearer</u> and <u>switched LWA bearer</u>.

台灣資通產業標準協會 E-WLAN Radio Level Integrates E-WLAN RADIO E-WLAN

LTE/WLAN Radio Level Integration with IPsec Tunnel (LWIP) feature allows a UE in <u>RRC_CONNECTED</u> to be configured by the eNB to utilize WLAN radio resources via <u>IPsec</u> tunnelling.

LTE/WLAN interworking enhancements

- E-UTRAN may send a <u>steering command</u> to the UE indicating to steer traffic from E-UTRAN to WLAN or from WLAN to E-UTRAN.
 - The upper layers in the UE shall be notified upon reception of such a command.
 - Upper layers determine which traffic is offloadable to WLAN.

Copyright 2016 ITRI 工業技術研究院

Status of Licensed-Assisted Access using LTE

 "Licensed-Assisted Access" is considered a <u>Secondary</u> <u>Component Carrier</u> integrated into LTE.
 <u>Fair coexistence</u> between LTE and other technologies such as Wi-Fi as well as between LTE operators is seen necessary.

Source: QC Copyright 2016 ITRI 工業技術研究院

Evolutionary Map of LAA using LTE

A study is required to determine <u>a single global</u> <u>solution</u> which enhances LTE to enable licensedassisted access to unlicensed spectrum while coexisting with other technologies and fulfilling the regulatory requirements. When looking at such enhancements, current <u>LTE physical-layer design</u> should be reused as much as possible.

Started from September, 2014

Objective of Study Item

- Define an evaluation methodology and possible <u>scenarios</u> for LTE deployments, focusing on LTE <u>Carrier Aggregation</u> configurations and architecture where one or more low power SCell(s) (ie. based on regulatory power limits) operates in unlicensed spectrum and is either <u>DL-only</u> or contains UL and DL, and where the <u>PCell operates in licensed spectrum</u> and can be either LTE FDD or LTE TDD.
- Assess the feasibility of base station and terminal operation of <u>5GHz band</u> (based on regulatory limits) in conjunction with relevant licensed frequency bands.
- Identify and define design targets for <u>coexistence</u> with other unlicensed spectrum deployments, including <u>fairness</u> with respect to Wi-Fi and other LAA services.

 The <u>listen-before-talk (LBT) procedure</u> is defined as a mechanism by which an equipment applies a clear channel assessment (CCA) check before using the channel.

T	■ Channel Access Priority Class (p)₀	<i>m</i> _p +	$CW_{\min,p^{*^2}}$	$CW_{\max,p} \circ$	$T_{m\cot,p} e^{\varphi}$	allowed CW_p sizes.
	■ 1₽	1₽	3₽	7₽	2 ms₊	{3,7}₀
	■ 2 _*	1₽	7⊷	15⊷	3 ms₊	{7,15}₀
	■ 3⊷	3₊	15⊷	63₽	8 or 10 ms₊	{15,31,63}₀
	■ 4 _€	7↩	15₽	1023	8 or 10 ms₊	{15,31,63,127,255,511,1023} _°

RAN1 defines new c hannel access proc edures with new par ameters.

Partial Subframe

- Discontinuous transmission with <u>limited maximum</u> transmission duration
 - Purpose: downlink data (e.g., physical downlink shared channel, PDSCH) transmission

• For LAA SCell only

- The 10 subframes within a radio frame are available for downlink transmissions.
 - Downlink transmissions occupy one or more consecutive subframes.
 - Downlink transmissions starting anywhere within a subframe and ending with the last subframe either fully occupied or following one of the DwPTS durations

台灣資通產業標準協會 LAA SCell Laa La Laa La La La La

• The serving cell's DRS used for <u>RRM measurements</u> can be used at least for coarse time and frequency synchronization.

	OF	OM sy	mbol #	ŧ										
source element #	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0			CSI	-RS		SSS	PSS			CSI	-RS			
1			CSI	-RS		SSS	PSS			CSI	-RS			
2	RO		CSI	-RS	R1	SSS	PSS	RO		CSI	-RS	R1		
3			CSI	-RS		SSS	PSS			CSI	-RS			
4			CSI	-RS		SSS	PSS			CSI	-RS			
5	R1		CSI	-RS	RO	SSS	PSS	R1		CSI	-RS	RO		
6			CSI	-RS		SSS	PSS			CSI	-RS			
7			CSI	-RS		SSS	PSS			CSI	-RS			
8	RO		CSI	-RS	R1	SSS	PSS	RO		CSI	-RS	R1		
9			CSI	-RS		SSS	PSS			CSI	-RS			
10			CSI	-RS		SSS	PSS			CSI	-RS			
11	R1		CSI	-RS	RO	SSS	PSS	R1		CSI	-RS	RO		

Re

- When LAA is configured:
 - The eNB configures the UE with one <u>DRS measurement</u> <u>timing configuration (DMTC) window</u> for all neighbor cells as well as for the serving cell (if any) on one frequency;
 - The UE is only expected to detect and measure cells transmitting <u>DRS</u> during the configured DRS DMTC window;
 - For <u>channel selection</u> in an environment where hidden nodes may exist, UE may be configured with one RMTC per a frequency to perform RSSI measurement, and to report average <u>RSSI</u> and <u>channel occupancy</u> (percentage of measurement samples that RSSI value is above a threshold) in a reporting interval.

For all measurements, except for UE Rx–Tx time difference measurements, <u>RSSI</u> and <u>channel occupancy measurements</u>, the UE applies the layer 3 filtering as specified in 5.5.3.2, before using the measured results for evaluation of reporting criteria or for measurement reporting.

 LAA can coexist with WiFi and outperform it in terms of spectral efficiency.

